
MINIMIZING THE NORMALIZED SUM OF SQUARE FOR WORKLOAD DEVIATIONS ON
IDENTICAL PARALLEL MACHINES

Johnny C. Ho, D. Abbott Turner College of Business, Columbus State University, Columbus, GA 31907
Tzu-Liang (Bill) Tseng, Dept of Mechanical & Industrial Engr., U. of Texas El Paso, El Paso, TX 79968
Alex J. Ruiz-Torres, Dept of Information and Decision Sciences, U. of Texas El Paso, El Paso, TX 79968

Francisco J. López, School of Business, Macon State College, Macon, GA 31206

ABSTRACT

In many organizations, it is desirable to distribute workload as equally as possible among a group of
employees or machines. This paper proposes a performance measure, that we call the Normalized Sum of
Square for Workload Deviations (NSSWD), and studies the problem of how to schedule a set of n jobs on
m parallel identical processors in order to minimize the NSSWD. The NSSWD criterion is relevant where
uniformity of wear to machines or of workload to employees is desirable. An algorithm, called Workload
Balancing (WB), is proposed for solving this problem. Moreover, we perform a simulation experiment to
evaluate WB against several well-known heuristics in the literature. Lastly, we discuss the computational
results obtained from the simulation experiment.

1. INTRODUCTION

Efficient utilization of resources is critical to the operations of any organization and scheduling plays an
important role in achieving this goal. One key characteristic of efficient resource utilization is the
balancing of work across the production resources given that it allows all resources to be ‘spent’ equally,
and eliminates problems caused when one resource is assigned more work than another.

This paper addresses the problem of scheduling n jobs, each job j with process time pj, in m identical
parallel machines with the objective of balancing the work load across machines as evenly as possible.
Let Ci be the completion time of the last job in machine i and Cmax = max. i = 1…m [Ci], which is also known
as the makespan of the schedule. Let μ be the mean machine completion time (the average completion
time for the last job in all machines), μ = 1/m ⋅ ∑ i = 1 … m Ci. Note that the value of μ is also equal to 1/m ⋅
∑ i = 1 … n pj, which is a constant given a problem instance. A “balanced work load” schedule will be one
where all Ci’s are as close to μ as possible.

Figure 1 presents four schedules for the same set of jobs. There are four machines (e.g. m = 4) and eight
jobs (e.g. n = 8) with process times {7, 5, 4, 4, 3, 3, 3, 3}. The mean machine completion time is 8 time
units and shown in the schedules as a dashed line. Schedules 1 and 2 have a makespan of 10, but we
propose that schedule 2 has a more balanced loading, thus from a schedulers standpoint, schedule 2 will
be preferred to schedule 1. Both schedules 3 and 4 have a makespan of 9 time units, which is the best
possible makespan solution. It is also proposed that schedule 4 is better than schedule 3 given that the
loading is more balanced (only 2 machines are off the target μ in schedule 4, versus all machines off in
schedule 3). From a load balancing point of view, schedule 4 is the best possible schedule.

The literature only has one previously proposed criterion used to measure the load balancing performance
of a parallel machines schedule. This method, proposed by Rajakumar et al. (2004), is called Relative
Percentage of Imbalance (RPI) and is based on the average error relative to Cmax. It is defined as RPI =
1/m ⋅ ∑ i = 1 … m (Cmax – Ci) / Cmax. The problem with using this criterion in the case of identical parallel
machines is that this measure depends solely on Cmax, and does not assess workload balancing as shown
next:

 1/m ⋅ ∑ i = 1 … m (Cmax – Ci) / Cmax = 1/(m Cmax) ⋅ ∑ i = 1 … m (Cmax – Ci)
 = 1 – 1/(m Cmax) ⋅ ∑ i = 1 … m Ci
 = 1 – μ / Cmax.

7

5

3

3 4

4

3

3

7

5

3

3 4

43

3

7

5

3

3 4

4

3 3

7

5

3

3

4 4

3 3

m1

m2

m3

m4

m1

m2

m3

m4

Schedule 1

Schedule 2

m1

m2

m3

m4

m1

m2

m3

m4

Schedule 3

Schedule 4

FIGURE 1: EXAMPLE OF THE PROBLEM

Thus, the RPI measure converts to 1 – μ / Cmax, so for the case of the identical parallel machine problem,
the RPI criterion is just a transformation of the Cmax criterion. Despite this, the RPI could be an applicable
measure when the machines are not identical, case in which ∑ i = 1 … m Ci may not be a constant. The RPI
measure for schedules 1-4 in Figure 1 are 0.2, 0.2, 0.111, and 0.111 respectively.

This paper proposes a new work load balancing measure based on the square errors that can be used in the
case of identical parallel machines. Square error measures have been used for many problems, for
example in variance determination, regression analysis, forecast errors, and design of experiment
(Montgomery, 2005). A measure based on square errors is relevant as it “penalizes” both above and
below target results, and the size of the penalty increases quadratically, thus heavily penalizing large
deviations. This paper proposes the use of a normalized sum of squared errors measure as a way to
characterize the load balancing of a schedule. The concept of the proposed measure is based on the well-
established Sum of Squares Principle in measuring variability in statistics and serves as a precise and
quantifiable measurement criterion.

For a single machine i the square error is given by (Ci – μ)2, with a total for all machines provided by ∑ i =

1 … m (Ci – μ)2. Different problem instances usually have distinct characteristics like different number of
machines or jobs. Thus, in order to support the relative evaluation of multiple problem instances, a
normalized square root of this sum is used in this paper as the measure of load balanced. We propose the
Normalized Sum of Square for Workload Deviations (NSSWD) criterion as a performance measure that
can characterize the load balancing across parallel resources; defined as NSSWD = [∑ i = 1 … m (Ci – μ)2] ½
/ μ. Clearly the problem’s objective is the minimization of NSSWD. For the schedules presented in Figure
1, the NSSWD measure values are 0.728, 0.306, 0.25, and 0.177, respectively for Schedules 1 to 4.

The NSSWD problem is a special case of the “assembly-line balancing” problem (Conway et al., 1967)
and carries a wide spectrum of general applications in several disciplines, including manufacturing,
logistics, and computer science (for example those mentioned in Brown 1971, Ho and Chang, 1991,
Dyckhoff and Finke, 1992, Khouja and Conrad, 1995). Examples of relevance today include manual
assembly cells often found in the maquila industry where it is highly desirable to assign work to parallel
production cells in such a way that all work is completed by a common time and that no cell is overloaded
and requires overtime. An ideal schedule would assign jobs such that all production cells are assigned the
same amount of work and all finish it at the same time. Besides job processing applications, the parallel
machine problem is similar to the bin packing problem, thus an application of interest would be the
loading of trucks for example, and load balancing would relate to the cargo assigned to each of the tucks
in the fleet. Having all trucks assigned equal loads would maximize the overall use of the resources and
keep all drivers equally satisfied.

As mentioned earlier, the identical parallel machines load balancing problem is related to the identical
parallel machine makespan problem. For comprehensive reviews on parallel machines scheduling
research, refer to Cheng and Sin (1990), Lam and Xing (1997), and Mokotoff (2001). A significant
amount of research on parallel machines scheduling has been directed towards solving the makespan
problem (Graham, 1969, Coffman et al., 1978, Lee and Massey, 1988, Ho and Wong, 1995, Gupta and
Ruiz-Torres, 2001, Lee et al., 2006, Akyol and Bayhan, 2006). Although a makespan optimal schedule
could be NSSWD optimal, as in the case of Schedule 4 in Figure 1, there is no guarantee that this always
occurs. For example, Schedule 3 is optimal for the makespan criteria, but not optimal for NSSWD. We
propose that the likelihood that a Cmax optimal schedule will not necessarily be a NSSWD optimal
schedule gets larger as the number of machines increases. Despite this, an optimal or near optimal
makespan solution is a good candidate to be close to an optimal or near optimal NSSWD solution.

Well-known heuristics for parallel machines scheduling makespan problems include: the Longest
Processing Time (LPT) algorithm (Graham, 1969), the Multifit algorithm (Coffman et al., 1978), and the
Repetitive Modified Greedy (RMG) algorithm (Lee and Massey, 1988). The LPT algorithm assigns jobs
one by one, starting from the unscheduled job with the longest processing time, to the machine having the
smallest assigned processing time. The Multifit algorithm uses a bin-packing approach along with a
binary search to find the minimum capacity, that is, the minimum makespan. The RMG algorithm
modifies the Multifit algorithm in one key respect: replacing the ‘first fit decreasing’ (FFD) criterion by
the ‘repetitive modified greedy’ criterion. The Two-Machine Optimal (TMO) algorithm (Ho and Wong,
1995) utilizes the concept of lexicographic search to minimize the makespan for the two-machine case.
Ho and Wong (1995) empirically show that TMO outperforms both Multifit and RMG and generally
dominates Multifit and RMG in both makespan and CPU time measures. They also develop the extended
TMO algorithm, denoted by xTMO, for the m parallel machines makespan problem. Recent uses of LPT
based heuristics for parallel machine problems include Lin and Liao (2008) and Koulamas and Kyparsis
(2008).

The remainder of the paper is organized as follows. The next section describes properties of the NSSWD
measure and establishes the complexity of the problem. Section 3 discusses the proposed algorithm for
the NSSWD m identical parallel processors problem. The fourth section provides a numerical example to
illustrate the proposed algorithm. Section 5 presents the design of our simulation experiment which is
used to evaluate the effectiveness of the proposed algorithm. Section 6 discusses the computational results
obtained from the simulation experiment. Lastly, the seventh section concludes the paper.

2. PROPERTIES OF NSSWD AND PROBLEM COMPLEXITY

This section demonstrates some properties of the NSSWD measure and establishes the complexity of
P||NSSWD.

Proposition 1. In the case of 2 machines, a Cmax optimal schedule is also an NSSWD optimal schedule.

Proof. Let Cmax and Ck be the completion times for the Cmax optimal schedule S, where Cmax ≥ Ck. Let Cx =
Cmax + Δ and Cz = Ck – Δ be the machine completion times of another schedule S’ not Cmax optimal, with Δ
> 0 and all completion times also > 0. Then, NSSWD(S) = [(Cmax – μ)2 + (Ck – μ)2] ½ / μ, and NSSWD(S’)
= [(Cx – μ)2 + (Cz – μ)2] ½ / μ. Suppose that NSSWD(S) > NSSWD(S’). Then (Cmax – μ)2 + (Ck – μ)2 > (Cx
– μ)2 + (Cz – μ)2, which simplifies to Cmax

2 + Ck
2 > Cx

2 + Cz
2. By substitution, we obtain Cmax

2 + Ck
2 > (Cmax

+ Δ)2 + (Ck – Δ)2 = Cmax
2 + Ck

2 > Cmax
2+ 2Δ Cmax + Δ 2 + Ck

2 – 2ΔCk + Δ2 , which leads to 0 > 2Δ (Cmax + Δ –
Ck). This is a contradiction given that Cmax ≥ Ck and Δ > 0 by assumption. □

Proposition 2. In the case of m > 2 machines, a Cmax optimal schedule is not necessarily a NSSWD
optimal schedule.

Proof. Example: Consider a set of 5 jobs with processing times 10, 100, 50, 40, and 10 time units,
respectively, to be processed by three identical machines. Let S be a schedule with C1 = 100 (job 2 in m1),
C2 = 90 (jobs 3 and 4 in m2), and C3 = 20 (jobs 1 and 5 in m3). Note that S is makespan optimum. Let S’
be the schedule that results from assigning jobs 1 and 2 to m1; job 3 to m2; and jobs 4 and 5 to m3. The
completion times of S’ are C’1 = 110 and C’2 = C’3 = 50. The NSSWD value for S is 0.8806 whereas the
one for S’ is 0.6999. Clearly the makespan optimum schedule S is not NSSWD optimum (S’ is not NSSWD
optimum either: just move job 1 to m2 or m3 to improve the measure, but the point of this proof is that just
because a schedule is makespan optimum, it does not mean it is necessarily NSSWD optimum. Schedule 3
in Figure 1 is an example involving four machines). □

Proposition 3. A non Cmax optimal schedule can be improved in terms of NSSWD by a reduction in its
maximum machine completion time.

Proof. Let S be a non Cmax optimal schedule with machine completion times C1, …, Cy, …. Cm, where C1
> Cy ≥ Cm. Let a modified version of the schedule, S’, have completion times C’1, …, C’y , …, Cm where
C’1 = C1 – Δ, C’y = Cy + Δ, and 0 < Δ < C1 – Cy (otherwise the makespan increases). We propose that
NSSWD(S) > NSSWD(S’). Suppose otherwise. Then C1

2 + Cy
2 ≤ C’1

2 + C’y
2. Hence C1

2 + Cy
2 ≤ C1

2 + Cy
2

+ 2ΔCy – 2ΔC1 + 2Δ2, which reduces to C1
 – Cy

 ≤ Δ. This contradict that C1 – Cy > Δ. □

Proposition 4. A NSSWD optimal schedule is necessarily a Cmax optimal schedule.

Proof. Comes directly from the proof of Proposition 4. □

As shown by Bruno et al. (1974) and Garey and Johnson (1979), the makespan parallel-machine problem
is known to be NP-hard. From the above propositions it is concluded that finding an optimal Cmax
schedule will be a component of finding an NSSWD optimal schedule. Since the P||Cmax problem is NP-
Hard, the P||NSSWD problem is NP-Hard.

3. ALGORITHM WORKLOAD BALANCING

The proposed algorithm, called Workload Balancing (WB), is based on some existing algorithms that
minimize makespan because the NSSWD and the makespan criteria correlate positively. The WB
algorithm consists of two major modules: (1) develop an initial solution by any existing heuristic; and (2)
improve the current solution by creating a series of two-machine sub-problems and solving them via Ho

and Wong’s TMO algorithm (1995). In module 1, we suggest to employ a quick and simple heuristic,
such as LPT, Multifit, or RMG, to obtain a seed solution. In module 2, the TMO algorithm employs a
lexicographic search approach to determine an optimal makespan schedule for the two-machine problem.
While TMO’s worst-case complexity is exponential, it has been shown to be capable of finding an
optimal solution quickly.

The following is a summary of notation that will be used in the presentation of the proposed algorithm.

n the number of jobs
pj processing time of job j
m the number of machines
mi machine i
M the set of m machines
δ the set of machines of the sub-problem which yields no makespan reduction
σ the set of unavailable (evaluated) machines
Ci the completion time of the last scheduled job on machine i

Without loss of generality, processing times are assumed to be integer. The WB algorithm is given below.

WB Algorithm

Inputs: n, m, pi, δ = σ = φ, an existing heuristic for use in Step 1.

Step 1: If m = 2, then
apply TMO to obtain a current schedule for the problem and go to Step 6;

 else,
use an existing heuristic to obtain a seed schedule.

Step 2: Find and { }iMi
C

∈
min { }jMj

C
∈

max .

Step 3: If , then 1)(≤− ij CC
go to Step 6;

 else,
apply TMO to the sub-problem consisting of jobs assigned to and . im jm

Step 4: If TMO yields a makespan reduction for the sub-problem in Step 3, then
update the current schedule, set σ = φ and return to Step 2;

 else,
move machines i and j to δ ,
find and { }ia

a
Ma

CC ≥
∉
∈

σδ ,

min { }jb
b

Mb
CC ≤

∉
∈

σδ ,

max ,

if both machines a and b do not exist, then
go to Step 6.

Step 5: If then),()(ibaj CCCC −≥−
update i = a;

else,
update j = b.

Return to Step 3.

Step 6: Stop. The current schedule is the best schedule identified by WB.

For m = 2, Step 1 of the WB algorithm applies TMO to develop a makespan optimal schedule for the
problem, then goes to Step 6 for termination. For m > 2, Step 1 utilizes a selected existing heuristic to
obtain a seed schedule for the problem. Step 2 locates the smallest load machine and the largest load
machine . Machines i and j form a sub-problem to be considered in the next step because they
represent the best potential to additionally reduce workload deviation.

)(im
)(jm

In Step 3, if it is infeasible to reduce makespan by re-scheduling jobs in and , i.e., ,
then WB goes to Step 6 for termination; otherwise, WB creates a sub-problem consisting of jobs assigned
to and and applies TMO to the sub-problem. In Step 4, if a reduction on NSSWD is achieved in the
previous step, then WB returns to Step 2 to restart this process; otherwise, WB locates machines a and b
such that and

im jm 1)(≤− ij CC

im jm

{ }ia
a

Ma
CC ≥

∉
∈

σδ ,

min { }jb
b

Mb
CC ≤

∉
∈

σδ ,

max , respectively (note that it is possible that a = b if there is only

one available machine remaining). If both machines a and b do not exist implying that further
improvement in makespan is infeasible, then WB goes to Step 6 for termination.

Step 5 selects the two machines yielding the greatest potential in reducing workload deviation as follows:
if then WB creates a sub-problem consisting of jobs assigned to and ;
otherwise, WB creates a sub-problem consisting of jobs assigned to and . The WB algorithm now
restarts Step 3 to test the termination condition. Finally, Step 6 terminates the WB algorithm and outputs
the current best schedule.

),()(ibaj CCCC −≥− am jm

im bm

For the three or more parallel machines problem, we will use the notation LPT+, Multifit+, and RMG+ to
identify the WB algorithm that employs initial or seed solutions from LPT, Multifit, or RMG,
respectively. LPT+, Multifit+, and RMG+ are designed with the specific NSSWD optimization criterion in
mind. We also need to bear in mind that LPT, Multifit, and RMG, and the heuristics that result from
adapting the extended TMO algorithm (Ho and Wong, 1995) to them, denoted by xLPT, xMultifit, and
xRMG, respectively, are designed to obtain optimal or near optimal makespan solutions. Proposition 2
establishes that a makespan optimal schedule is not necessarily NSSWD optimal, but by Proposition 3 an
NSSWD optimal schedule must be makespan optimal. Because of this, it is not clear how good are the
schedules obtained with heuristics LPT, Multifit, RMG, xLPT, xMultifit, and xRMG in terms of the
NSSWD optimization criterion. In this article we test and compare, with computational experiments, how
effective are makespan optimization heuristics in generating good NSSWD solutions, and, simultaneously
we analyze whether LPT+, Multifit+, and RMG+ are significantly better than makespan optimization
heuristics. Before we discuss our computational results, we present a small example next.

4. NUMERICAL EXAMPLE

A small numerical example with twelve jobs and four machines is used to demonstrate the WB algorithm.
The processing times of the twelve jobs are generated from a discrete uniform distribution between 1 and
100. They are then sorted in non-increasing order for convenience and re-numbered as 1, 2, ..., 12. Their
processing times are: 88, 84, 81, 79, 79, 69, 65, 56, 52, 41, 29, and 14. The WB algorithm is applied to
the example using seed solutions obtained by the LPT, Multifit, and RMG heuristics. Nonetheless, we
only focus on Multifit as the seed solution here for illustrative purpose.

Let be the set of jobs assigned to , then the seed solution obtained by Multifit is: = {1, 2, 12}
with = 186; = {3, 8, 9} with = 189; = {4, 6, 10} with = 189; and = {5, 7, 11} with

 = 173. The NSSWD for the seed Multifit schedule obtained from Step 1 is 0.07175. Step 2 finds that
the machines with the largest and smallest loads are 2 and 4, respectively. Since which is >

iS im 1S

1C 2S 2C 3S 3C 4S

4C
1642 =− CC

1, the six jobs assigned to and , i.e., jobs 3, 5, 7, 8, 9, and 11, form the first sub-problem which is
solved by the TMO algorithm in Step 3. Since the TMO algorithm returns a smaller makespan for the
sub-problem, the current schedule is updated to: = {1, 2, 12} with = 186; = {5, 8, 9} with =
187; = {4, 6, 10} with = 189; and = {3, 7, 11} with = 175. The NSSWD for the updated
current schedule is reduced to 0.05914.

2m 4m

1S 1C 2S 2C

3S 3C 4S 4C

As an improvement is made, WB returns to Step 2 and seeks the new largest and smallest load processors,
which are and to form the next sub-problem. Applying the TMO algorithm to the six jobs
assigned to and , WB obtains the following schedule: = {1, 2, 12} with = 186; = {5, 8,
9} with = 187; = {4, 7, 10} with = 185; and = {3, 6, 11} with = 179. The NSSWD for
this new current schedule is 0.03379. Since an improvement is accomplished, the WB again returns to
Step 2 and identifies that the largest and smallest load processors, which are and , to form the next
sub-problem. However, no improvement is made from solving the sub-problem consisting of jobs
assigned to these two machines, WB places and in set

3m ,4m

3m 4m 1S 1C 2S

2C 3S 3C 4S 4C

2m 4m

2m 4m δ and finds that a = 3 and b = 1 in Step 4.
In Step 5, since WB updates j = 1 and returns to Step 3.),()(4132 CCCC −<−

TABLE 1: PERFORMANCE RESULTS FOR THE EXAMPLE

Heuristic NSSWD Cmax

LPT 0.10136 196
xLPT 0.03010 187
LPT+ 0.02084 187
Multifit 0.07175 189
xMultifit 0.03379 187
Multifit+ 0.02084 187
RMG 0.03942 187
xRMG 0.03942 187
RMG+ 0.02589 187

The WB algorithm terminates and yields a final schedule as: = {1, 3, 12}; = {5, 8, 9}; = {4, 7,
10}; and = {2, 6, 11} with NSSWD = 14.75. Table 1 presents the NSSWD and makespan results for the
LPT, xLPT, LPT+, Multifit, xMultifit, Multifit+, RMG, xRMG, and RMG+ methods.

1S 2S 3S

4S

5. SIMULATION EXPERIMENT

A simulation experiment is performed to test the effectiveness of the proposed algorithm. For the two-
processor case, we compare the WB algorithm with three of the most common heuristics for the
makespan problem in the literature, namely LPT, Multifit, and RMG. For the m-processor case, we also
include the extended TMO algorithm (Ho and Wong, 1995) in the evaluation. The number of iterations is
set at 10 for both Multifit and RMG so as to make a fair comparison. It should be noted that (1/2)10 ≤
0.1%.

The simulation study is divided into two phases. Phase 1 deals with the two processors case only; while
phase 2 considers the three or more processors case. In phase 1, we study the effects of two factors;
namely number of jobs and variance of processing times, have on LPT, Multifit, RMG, and WB. The
numbers of jobs are set at ten levels: 7, 8, 9, 10, 11, 12, 25, 50, 75, and 100. These levels cover both odd
and even numbers of jobs. The processing times are assumed to follow a discrete uniform distribution,

DU(1, b), where b is set at three levels: 100, 300, and 500. For more details on data generation see Gupta
et al. (2004). These two factors together make 30 problem sets. One hundred replications are performed
for each set, which provides a total of 3,000 problems. As we demonstrate in Proposition 1a, WB
determines the optimal NSSWD for the two machines case. Thus, WB will serve as the standard of
comparison for heuristics and provide some insights into the performance of other heuristics.

Phase 2 evaluates nine heuristics – LPT, xLPT, LPT+, Multifit, xMultifit, Multifit+, RMG, xRMG, and
RMG+ and considers two factors – number of jobs and number of machines. For m = 3 and 4, n is set at
four levels: 13, 14, 15, and 16; for m = 5, 8, 11, and 14, the n/m ratio is set at three levels: 5, 7, and 9.
Hence, a total of 20 combinations of n and m values are studied. The processing time is assumed to follow
a discrete uniform distribution with parameters 1 and 300. Again, we run 100 replications for each set of
problems; this provides a total of 2,000 problems. All methods are implemented in FORTRAN running
on a Pentium 4-based microcomputer.

6. COMPUTATIONAL RESULTS

The performance results for the two-processor case are shown in Table 2. Each value in the Table
represents the mean NSSWD of 100 replications for the respective set as specified by n and b. It should be
noted that NSSWD is expressed in the percentage form in our computational results. Table 2 confirms that
the WB algorithm yields the best performance among all methods as it is optimal. Among the other three
heuristics being considered, RMG yields the best overall performance; while LPT has the worst overall
performance. The number of jobs correlates negatively with NSSWD for all methods. With respect to
processing time variability (determined by b), it does not have a major impact on the performance of the
three heuristics; but it correlates negatively with NSSWD for WB. Moreover, it is interesting to note that
while RMG performs significantly better than the LPT and Multifit when n is small (7 − 25), but the
opposite holds when n is large (50 − 100).

TABLE 2: TWO-PROCESSOR NSSWD (IN %) RESULTS

 LPT Multifit RMG WB
n \ b 100 300 500 100 300 500 100 300 500 100 300 500

7 4.1283 4.1541 4.1468 2.9681 3.1931 3.2504 1.6093 1.6273 1.6369 1.2917 1.3334 1.3374
8 2.5684 2.5670 2.5894 2.1336 2.2624 2.2758 1.2294 1.2327 1.2473 0.6236 0.5741 0.5922
9 3.0682 3.0801 3.0658 1.9573 1.9831 1.9979 0.9213 0.8515 0.8630 0.2957 0.2448 0.2352

10 1.9213 1.9724 1.9938 1.4175 1.4245 1.4446 0.7873 0.7847 0.7978 0.2006 0.1609 0.1661
11 1.6644 1.6615 1.6640 1.3350 1.3431 1.3617 0.6667 0.7144 0.7481 0.1343 0.0844 0.0728
12 1.1929 1.2086 1.2137 0.8061 0.7907 0.7958 0.5277 0.5120 0.5398 0.1406 0.0480 0.0444
25 0.3988 0.3943 0.3821 0.2018 0.2149 0.2286 0.1258 0.1643 0.1713 0.0665 0.0181 0.0098
50 0.0710 0.0720 0.0712 0.0533 0.0511 0.0611 0.0873 0.1192 0.1265 0.0285 0.0109 0.0057
75 0.0447 0.0442 0.0449 0.0307 0.0307 0.0342 0.0943 0.1261 0.1310 0.0167 0.0064 0.0038

100 0.0225 0.0205 0.0196 0.0180 0.0121 0.0159 0.1113 0.1286 0.1328 0.0124 0.0036 0.0036

Table 3 gives the CPU time in seconds for each of the 30 experimental conditions of the two-processor
case. As shown in the Table, LPT requires the least CPU time; while RMG needs the most CPU time. The
CPU time for both Multifit and RMG increases sharply as n increases, but it only increases modestly for
LPT and WB.

Table 4 presents the m-processor NSSWD computational results for each of the 20 experimental
conditions. Among the three heuristics yielding an initial solution, RMG outperforms Multifit in every
one of the 20 experimental conditions, which in turn outperforms LPT in all 20 experimental conditions.

The xTMO algorithm is able to significantly reduce NSSWD using seed solutions obtained by LPT,
Multifit, and RMG in all 20 experimental conditions. Furthermore, Multifit+ (abbreviated as MF+ in
Tables 4 and 5) outperforms xMultifit (abbreviated as xMF in Tables 4 and 5) in all 20 experimental
conditions; RMG+ outperforms xRMG in 19 experimental conditions and ties in one; and LPT+
outperforms xLPT in 16 experimental conditions and ties in four. For a particular level of m, NSSWD
decreases as the ratio of n to m increases. This observation is true for all nine heuristics evaluated.

TABLE 3: TWO-PROCESSOR CPU TIME (IN SECONDS) RESULTS

 LPT Multifit RMG WB
n \ b 100 300 500 100 300 500 100 300 500 100 300 500

7 0.00 0.00 0.00 0.05 0.00 0.05 0.15 0.05 0.05 0.05 0.10 0.00
8 0.05 0.05 0.00 0.15 0.05 0.00 0.10 0.15 0.10 0.00 0.05 0.05
9 0.05 0.00 0.00 0.15 0.00 0.00 0.15 0.05 0.10 0.05 0.10 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.15 0.15 0.05 0.05 0.05
11 0.00 0.00 0.05 0.05 0.00 0.10 0.10 0.05 0.10 0.15 0.10 0.15
12 0.05 0.05 0.05 0.05 0.00 0.05 0.20 0.10 0.15 0.00 0.10 0.15
25 0.05 0.00 0.00 0.10 0.05 0.05 0.60 0.20 0.20 0.05 0.10 0.05
50 0.10 0.00 0.10 0.30 0.25 0.35 0.65 0.50 0.50 0.15 0.05 0.15
75 0.30 0.15 0.10 0.80 0.50 0.40 0.80 0.85 0.90 0.30 0.15 0.05

100 0.25 0.20 0.20 1.25 1.15 0.50 1.30 1.10 1.20 0.25 0.30 0.30
Mean 0.09 0.05 0.05 0.29 0.20 0.15 0.43 0.32 0.35 0.11 0.11 0.10

TABLE 4: M-PROCESSOR NSSWD (IN %) RESULTS

m n LPT xLPT LPT+ MF xMF MF+ RMG xRMG RMG+
3 13 3.2516 0.4251 0.3357 2.3893 0.6062 0.3355 1.4988 0.5660 0.3344
 14 3.0063 0.2944 0.2120 1.8822 0.3459 0.2034 1.1619 0.2634 0.2194
 15 2.5738 0.1387 0.1349 1.7936 0.1937 0.1312 0.9401 0.1838 0.1339
 16 2.2386 0.1125 0.0975 1.4093 0.1428 0.1058 0.8439 0.1360 0.0936

4 13 5.5444 1.9586 1.7424 4.7195 2.3271 1.7554 3.6574 2.6174 1.6620
 14 5.2124 1.6109 1.3872 4.2358 1.4455 1.2859 2.5161 1.5362 1.2662
 15 5.6640 1.0352 0.8196 3.4261 1.1045 0.8121 2.0887 1.1606 0.8075
 16 4.1880 0.6317 0.4654 3.0299 0.7449 0.5036 1.6077 0.6745 0.4354

5 25 3.3543 0.1822 0.1539 1.8016 0.2814 0.1562 1.1276 0.2728 0.1892
 35 1.6319 0.0811 0.0800 1.0630 0.0986 0.0871 0.5579 0.0892 0.0820
 45 1.0605 0.0634 0.0634 0.5901 0.0640 0.0634 0.3652 0.0634 0.0634

8 40 3.7126 0.2252 0.1848 2.0846 0.3311 0.2175 1.2792 0.3262 0.2168
 56 2.1023 0.1081 0.1044 1.0522 0.1266 0.1151 0.6830 0.1328 0.1115
 72 1.2640 0.0810 0.0810 0.6378 0.0844 0.0835 0.5678 0.0862 0.0823

11 55 4.3466 0.2522 0.2055 2.0037 0.3781 0.2417 1.3416 0.3964 0.2615
 77 2.2242 0.1191 0.1173 1.1386 0.1669 0.1272 0.6685 0.1536 0.1274
 99 1.4189 0.0865 0.0865 0.7376 0.0962 0.0874 0.5984 0.0930 0.0877

14 70 4.6954 0.2589 0.2182 2.0011 0.4054 0.3024 1.4598 0.4314 0.2672
 98 2.4338 0.1356 0.1340 1.2768 0.1734 0.1473 0.8507 0.1782 0.1391
 126 1.5249 0.1056 0.1056 0.9434 0.1154 0.1061 0.6359 0.1285 0.1056

Table 5 gives the CPU time in seconds for each of the 20 experimental conditions of the m-processor
case. Similar to the results obtained in the two-processor case, LPT requires the least CPU time while

RMG requires the most CPU time among the three heuristics generating initial solutions. The additional
CPU time required by the xTMO and WB algorithms depends on the particular heuristic providing the
initial solution. xRMG and RMG+ take about 50% longer CPU time than that of RMG; on the other hand,
xLPT and LPT+ take about 400% more CPU time than that of LPT. For all heuristics, the CPU time
generally increases as the n/m ratio increases. It is interesting to note that LPT+ in many experimental
conditions is faster than Multifit and RMG but delivers much lower NSSWD.

TABLE 5: m-PROCESSOR CPU TIME (IN SECONDS) RESULTS

m n LPT xLPT LPT+ MF xMF MF+ RMG xRMG RMG+
3 13 0.00 0.35 0.35 0.05 0.30 0.50 0.30 0.45 0.70
 14 0.00 0.20 0.20 0.05 0.10 0.40 0.25 0.40 0.45
 15 0.05 0.20 0.15 0.05 0.25 0.35 0.15 0.25 0.25
 16 0.00 0.15 0.30 0.10 0.30 0.25 0.25 0.25 0.35

4 13 0.00 0.00 0.15 0.10 0.35 0.20 0.10 0.15 0.20
 14 0.00 0.10 0.15 0.15 0.30 0.35 0.05 0.25 0.20
 15 0.05 0.15 0.20 0.10 0.35 0.35 0.20 0.25 0.35
 16 0.00 0.20 0.10 0.15 0.40 0.45 0.15 0.15 0.35

5 25 0.00 0.25 0.35 0.05 0.30 0.55 0.35 0.75 0.95
 35 0.10 0.35 0.35 0.35 0.70 0.65 0.40 0.70 0.75
 45 0.05 0.30 0.30 0.30 0.70 0.65 0.70 0.85 0.95

8 40 0.05 0.35 0.75 0.20 0.80 0.85 1.05 1.60 1.60
 56 0.20 0.55 0.45 0.40 1.10 1.20 1.50 2.05 1.95
 72 0.10 0.45 0.50 0.65 1.25 1.15 1.90 2.35 2.40

11 55 0.15 0.75 1.45 0.65 1.80 1.95 1.40 1.95 1.85
 77 0.10 0.90 0.70 0.50 2.05 2.05 2.05 2.60 3.40
 99 0.20 0.40 0.95 0.85 3.17 3.12 3.00 4.35 4.10

14 70 0.25 1.25 1.60 0.75 1.65 2.45 2.75 3.65 3.85
 98 0.35 1.25 0.90 1.25 3.10 3.60 3.20 4.80 5.50
 126 0.40 0.95 1.30 1.45 3.92 4.51 5.15 7.20 7.42

7. CONCLUSIONS

We propose an algorithm, called WB, to minimize the sum of square for workload deviations on m
parallel identical machines. The WB algorithm is based on the idea from the TMO algorithm (Ho and
Wong, 1995) and guarantees an optimal solution when the number of machines is two. We perform an
extensive simulation study to test the effectiveness of WB against several existing algorithms, including
LPT, Multifit, and RMG, and the extended TMO algorithm. The computational results show that both the
WB and extended algorithms outperform the LPT, Multifit, and RMG significantly. Moreover, the WB
algorithm, on average, reduces the NSSWD given by the extended algorithm by about 25%, while it takes
about 15% more CPU time than that of the extended algorithm.

There exist a number of avenues worthy of future investigations. First, it is interesting to study the bi-
criteria scheduling involving the NSSWD and another performance measure, such as total weighted
flowtime. Second, it is useful to investigate the tradeoffs between NSSWD and a due-date related
criterion, such as the number of tardy jobs, and analyze the Pareto (efficient) solutions. That is,
determining how much improvement in the number of tardy jobs can be gained by allowing NSSWD to
increase by one or more units. Third, it would seem logical and desirable to extend the proposed
algorithm to solve the NSSWD non-identical parallel machines problem.

REFERENCES

[1] Akyol, D.E., and Bayhan, G.M. “Minimizing Makespan on Identical Parallel Machines using

Neural Networks.” Lecture Notes in Computer Science, 2006, 4234, 553–562.
[2] Brown, A.R. Optimum Packing and Depletion: The Computer in Space- and Resource-Usage

Problem. Amsterdam: Elsevier Publishing Company, 1971.
[3] Bruno, J., Coffman, E.G., and Sethi, R. “Scheduling Independent Tasks to Reduce Mean Finishing

Time.” Communications of the ACM, 1974, 17, 382–387.
[4] Cheng, T.C.E., and Sin, C.C.S. “A State-of-the-Art Review of Parallel-Machine Scheduling

Research.” European Journal of Operational Research, 1990, 47, 271–292.
[5] Coffman, E.G., Garey, M.R., and Johnson, D.S. “An Application of Bin-Packing to Multiprocessor

Scheduling.” SIAM Journal of Computing, 1978, 7, 1–17.
[6] Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling. Reading, MA: Addison-

Wesley, 1967.
[7] Dyckhoff. H., and Finke, U. Cutting and Packing in Production and Distribution: A Typology. New

York: Springer-Verlag, 1992.
[8] Garey, M.R., and Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-

Completeness. San Francisco: Freeman, 1979.
[9] Graham, R.L. “Boundaries on Multiprocessing Timing Anomalies.” SIAM Journal of Applied

Mathematics, 1969, 17, 416–429.
[10] Gupta, J.N.D., Ho, J.C., and Ruiz-Torres, A.J. “Makespan Minimization on Identical Parallel

Machines subject to Minimum Total Flowtime.” Journal of Chinese Institute of Industrial
Engineers, 2004, 21, 220–229.

[11] Gupta, J.N.D., and Ruiz-Torres, A.J. “A LISTFIT Heuristic for Minimizing Makespan on Identical
Parallel Machines.” Production Planning and Control, 2001, 12, 28–36.

[12] Ho, J.C., and Chang, Y.-L. “Heuristics for Minimizing Mean Tardiness for m Parallel Machines.”
Naval Research Logistics, 1991, 38, 367–381.

[13] Ho, J.C., and Wong, J.S. “Makespan Minimization for m Parallel Processors.” Naval Research
Logistics, 1995, 42, 935–948.

[14] Khouja, M., and Conrad, R. “Balancing the Assignment of Customer Groups among Employees.”
International Journal of Operations and Production Management, 1995, 15, 76–85.

[15] Koulamas, C., and Kyparsis, G. “A Modified LPT Algorithm for the Two Uniform Parallel
Machine Makespan Minimization Problem.” European Journal of Operational Research, In Press.

[16] Lam, K., and Xing, W.X. “New Trends in Parallel Machine Scheduling.” International Journal of
Operations and Production Management, 1997, 17, 326–338.

[17] Lee, C.Y., and Massey, J.D. “Multiprocessor Scheduling: An Extension of the Multifit Algorithm.”
Journal of Manufacturing Systems, 1988, 7, 25–32.

[18] Lee, W.-C., Wu, C.-C., and Chen, P. “A Simulated Annealing Approach to Makespan Minimization
on Identical Parallel Machines.” International Journal of Advanced Manufacturing Technology,
2006, 31, 328–334.

[19] Lin, C-H., and Liao, C-J. “Makespan Minimization for Multiple Uniform Machines.” Computers
and Industrial Engineering, 2008, 54, 983–992.

[20] Mokotoff, E. “Parallel Machine Scheduling Problems: A Survey.” Asia-Pacific Journal of
Operational Research, 2001, 18, 193–242.

[21] Montgomery, D.C. Design and Analysis of Experiments, 6th edition. Hoboeken, NJ: John Wiley &
Sons, 2005.

[22] Rajakumar, S., Arunachalam, V.P., and Selladurai, V. “Workflow Balancing Strategies in Parallel
Machine Scheduling.” International Journal of Advanced Manufacturing Technology, 2004, 23,
366–374.

	WB Algorithm
	TABLE 1: PERFORMANCE RESULTS FOR THE EXAMPLE

	Heuristic
	Cmax
	[21] Montgomery, D.C. Design and Analysis of Experiments, 6th edition. Hoboeken, NJ: John Wiley & Sons, 2005.

