

A Load Service Structure in Ad-hoc Computer Networks

Ming-Chang Huang

Department of Business Information Systems / Operation Management

University of North Carolina at Charlotte

mhuang5@uncc.edu

Abstract

It is important how wireless hosts find other hosts efficiently for load service purposes

because hosts in an ad-hoc network moves dynamically. This paper talks a new design

method for load services in computer networks. Directory agents use databases to save

information provided by load-server agents and protocols are built for how a host can

find available hosts for load service and load transfer purposes when it moves to a new

region. This includes how a directory agent builds its database, how a load-server agent

provides its services, and how a load-client agent gets the services it needs. The

protocols also use fuzzy logic control mechanism to transfer loads for load balancing,

instead of fixed threshold level methods. The purpose of this new system structures is to

provide efficient ways in building communication and accessing resources in ad-hoc

computer network systems. This helps users to find data easily and securely.

Keywords: Load Service, Ad-Hoc Network, Directory Agent, Load-server Agent, Load-

client Agent, Peer-to-Peer

1. Introduction

Computer networks can provide parallel computation and services. It is important that

hosts send their loads to other hosts for certain function implementation through network

transfer. With the increasing popularity of mobile communications and mobile

computing, the demand for load services and load balancing grows. When a computer is

mailto:mhuang5@uncc.edu

overloaded or it needs special services from other computers, it may send requests to

other computers for load transfer or load services. For example, a computer may need

some jobs to be executed with higher quality of services or it needs some jobs to be done

with a short period of time that its processor is too slow to perform the jobs; therefore, it

may send part those jobs to other computers with higher speeds of processors. Since

wireless networks have been wild used in recent years, how a host transfers its loads to

other nodes has becomes a very important issue because not all wireless hosts have the

ability to manipulate all their loads. For instance, a host with low battery power cannot

finish all its jobs on time and should transfer some of them to other hosts. Currently,

most of load balancing algorithms are based on wired network environments, it is

important to find an efficient way for load service purposes.

Before a wireless host transfers its loads to other hosts or asks for load services

from other hosts, it has to find available hosts using resource allocation algorithms.

There are several resource allocation protocols been developed, for example, IEFT

Service Location Protocol (SLP) [1] and Jini [2] software package from Microsystems.

However, these protocols address how to find the resources in wired networks, not in

wireless networks. Maab [3] develops a location information server for location-aware

applications based on the X.500 directory service and the lightweight directory access

protocol LDAP [4]; while it does not cover some important issues about the movements

of mobile hosts, for example, how to generate a new directory service and how a host

gets the new services, when a directory agent moves away its original region. In an Ad-

Hoc network, system structure is dynamic and hosts can join or leave any time.

Therefore, how to provide load services and how to find available hosts providing load

services become importance issues in an Ad-Hoc network system.

In this paper, a system structure for load services is constructed in wireless Ad-

Hoc network systems using peer-to-peer concept [8, 9]. In Ad-Hoc network systems,

hosts move dynamically without base stations for communication. The load service

architecture provides special services upon requests from hosts and these services, e.g.,

include resource location services and load balancing services. A host may send its

special requests to other hosts for load services or send its loads for load balancing. The

requests include service types the host needs or the amount of loads to be sent to other

hosts. For those special services, the host should define the conditions that other hosts

may accept the services. For example, the request includes the price of job execution, the

limit requirement of execution time, etc.

In Section 2 discusses the system structure. Section 3 expresses the details of the

method. Section 4 and section 5 illustrate the information format for databases, and the

scalability respectively. Section 6 presents the conclusion.

2. System structures

This section describes the structure used in the system. Basically, there are three

components in my load service system – directory agent, load-server agent and load-

client agent. A load-server agent provides load services that are queried by other hosts

(load-client agents) which require load services. Load-server agents post the types of

services periodically to their directory agents to update the services they can provide to

load-client agents. A load-client agent is a host in the network, which may need some

services performed by other hosts. It sends requests to its directory agents to ask for

services from load-server agents when it is heavily loaded or it needs some special

services, which it does not have the ability to perform. A directory agent forms groups

for both load-server agents and load-client agents respectively and builds a database for

service queries from load-client agents.

Figure 1 shows an example based on the architecture of my load service system.

Each directory agent has a query database, which stores all the query information from

load-server agents. Load-server agents and load-client agents may join directory agents

upon requests. In Figure 2, for example, Load-server Agent 1 and Load-client Agent 1

register with Directory Agent 1; Load-server Agent 2 registers with Directory Agent 1

and Directory Agent 2 at the same time. Load-client Agent 1 may send requests to

Directory Agent 1 for querying load services and Directory Agent 1 checks its database

to find fitted load-server agents and sends those available load-server agent addresses to

Load-client Agent 1. The fitted load-server agents can be Load-server Agent 1, Load-

server Agent 2, or both. Load-client Agent 1 can choose one of them based on its best

convenience; or it can choose both of them for special purposes. Of course, it is possible

that none of the load-server agents can be found.

Figure 1: Load service system architecture

3. Algorithm for wireless ad-hoc load services

There are several issues consider when the system architecture is constructed, for

example, how a directory agent asks a host to register with its database, the effects of the

movement of mobile hosts to the join of load-server and load-client agents, and fault

tolerance of the system. Below it describes the details how hosts join or leave directory

agents and how directory agents form their databases when they move.

This paper also describes how a load-client agent should pay load-server agents that

it asks the services from and how hosts in the system gain tokens in order to pay the

services it need. How to transfer loads between load-server agents and load-client agents

is also mentioned in this section.

3.1 A directory agent asks hosts for registration

In order to collect load service information from other hosts and provide results for

queries, a directory agent builds a query database. The information in the database

includes the addresses of load-server agents which provide information, the service types,

or the loads that load-server agents can accept. The host can be a desk computer or a

laptop once it has the ability; for example, it has high-speed processors, enough power for

communication, etc. The method how a directory agent asks for registration is discussed

below.

1. A directory agent broadcasts a message to the other hosts within the range that its

power can reach.

2. A host, which receives the broadcast message from a directory agent and is willing to

register with the directory agent’s database as a load-server agent, sends an ACK

message to the directory agent for registration. The ACK message includes

information, such as the service types it can perform and/or the loads it can accept,

etc., provided by a load-server agent.

3. The directory agent keeps the ACK information in its query database and therefore

builds a link from itself to the load-server agent sending the ACK message.

4. To check if a load-server agent is still available in the database, a directory agent

periodically sends multicast messages to all the load-server agents, which have query

information in its database. This purpose for this is for database information update

because load-server agents might move away anytime. When a load-server agent

receives a query message from a directory agent, it should send back a response to the

directory agent to indicate that it is still existed in the directory agent’s power range.

If the directory agent does not get the acknowledgement from a load-server agent that

has query information in the database, it deletes the information provided by that

load-server agent from its database and therefore deletes the link between them. The

Figure 2 demonstrates the steps how a directory agent builds its query database.

(1) A directory agent sends requests to hosts for registration.

(2) Hosts, which are willing to register as load-server agents, send ACKs back to the

directory agent.

(3) The directory agent saves all the information in those ACKs to its database for

future use.

(4) The directory agent also builds links between itself and its load-server agents.

Figure 2: The procedures for a directory agent asks for registration

3.2 A host join directory agent’s databases as a load-server agents

A mobile host may join directory agents’ databases as a load-server agent when it has the

ability to provide services, or it is lightly loaded and is willing to accept loads from other

hosts. Not only a load-server agent may join a directory agent, but also it may join

multiple directory agents. A load-server agent joins directory agent’s databases in two

ways.

Method 1: The first method is that it sends out messages to ask for registering with

directory agents within its power range and waits for the replies from those

directory agents. After receiving acknowledgements from directory agents,

the mobile host registers with the databases of those directory agents by

sending its address, the service types it can provide, and the amount of loads

it can accept for load transfer. A mobile host can register with several

directory agents at the same time; which means a mobile host can join several

databases simultaneously.

Method 2: The second method, like the method in Section 3.1, is that a mobile host

receives messages from some directory agents for requesting joining their

databases. Thereafter, the mobile host may join those databases by replying

acknowledgements (ACKs) back to those directory agents and the directory

agents add the ACKs into their databases.

After the directory agents receive the ACKs from load-server agents, they build

links between them. The following figure illustrates the procedures of Method 1 for a

load-server agent to a directory agent database.

(1) A host sends request to directory agents for registering as a load-server agent.

(2) Directory agents send ACKs back to the host when they receive the request and allow

it to join their databases.

(3) The host sends registration information to those directory agents once it receives the

ACKs.

(4) Those directory agents add the information into their databases.

(5) The directory agents also build links between themselves and the load-server agent.

Figure 3: How a load-server joins a directory agent database for Method 1

3.3 Queries from load-client agents

A mobile host may join directory agents’ databases as a load-client agent when it needs

services from other hosts. Since directory agents broadcast their addresses periodically to

ask for mobile hosts to register for services, a load-client agent can find the addresses of

directory agents from those broadcasting messages. When a load-client agent needs load

services, it sends queries to directory agents that it can contact and waits for the replies

from them. The contents in these replies include the addresses of available load-server

agents that can provide the services the load-client agent asks. The load-client agent may

receive several replies from different load-server agents at the same time and it chooses

the best-fit one. If it cannot find available load-server agents (without any reply from

directory agents in a period of time), it waits for a certain period of time and sends

queries again.

 A load-client agent selects the best-fit load-server agent based on the service

conditions it requests. For example, it may choose the one that satisfies the price the load-

client agent asks. When a load-client agent selects the best-fit load-server agent, it

directly sends service requirements or loads to the chosen load-server agent. Figure 4

shows the steps.

(1) A load-client agent sends query to directory agents to request services

(2) Directory agents search their database for the desired services requested by the load-

client agent.

(3) Directory agents send replies back, which indicate the information they have in the

databases.

(4) The load-client agent gets the services it needs from load-server agents.

Figure 4: How a load-client agent sends queries

3.4 Movement of directory agents

When a directory agent moves to another region, it loses all the information in its

database about load-server agents and its peer directory agents. How a directory agent

notifies all the other agents about its movement becomes an important issue. There are

two ways that other agents can detect the leave of a directory agent. The first is that the

directory agent sends a message to notify other hosts about its movement. Hosts receiving

the message will stop sending queries to this directory agent and remove the links

between them.

The second method is to use the fact that hosts cannot detect the existence of a

directory agent. Since load-server agents send update information to a directory agent

periodically, load-server agents can notice that a directory agent does not exist in the

region if hosts do not get the reply from that directory agent. For a load-client agent to

detect the existence of a directory agent, if it does not receive any broadcast message

during a period of time, then it deletes the link to that directory agent.

After moving to a new region, a directory agent sends messages to hosts in the

power range it can reach to ask for hosts to join its database for load services as discussed

in section 3.1. It may happen that some hosts do not have any directory agent to contact

to once a directory agent moves away. Those hosts will keep sending messages to other

hosts for finding new directory agents as described in section 3.2 and 3.3.

3.5 Movement of load-server agent

When a load-server agent moves to a new region, it may lose its original directory agents

and it has to establish new links to its new directory agents as described in section 3.2.

Once a directory agent does not receive update information from a load-server agent for a

period of time, it deletes the information about that load-server agent from its database

and therefore deletes the link between them.

3.6 An example

Figure 5 illustrates a flow how a directory agent, load-server agent, and load-client agent

communicates each other. (1), (2), (3), (4), and (5) indicate the procedures for setting up

the processes.

(1) A Directory Agent broadcasts join message to hosts.

(2) Load-Server Agent replies an acknowledgement to that Directory Agent to join the

database.

(3) Directory Agent saves the information to its database.

(4) Load-Server Agent sends requests to Directory Agent for load services.

(5) Directory sends the address of Load-Server Agent if Load-Server Agent is suitable

for load service.

(6) Load-Client Agent communicates with Load-Server Agent directly.

Figure 5: An Example for Communications between Agents

3.7 Load transfer

A host may transfer loads to other hosts when it is heavily loaded. Instead of using fixed

threshold method to decide whether a host is heavily loaded, fuzzy logic control method

is applied to improve the performance. First, the host finds an available host by sending

service request as mentioned before. Once it finds a host that accepts its request for load

transfer, it transferred its loads to the selected host. The amount of loads to be transferred

is equal to half of the difference of loads between the load-client agent and the load-

server agent. It is possible that there are several server load-server agents, which satisfy

the request by a load-client agent. In order to reduce the distance and moving effect, a

load-client chooses the load-server agent that is the closest one to it. Figure 6, for

example, shows the power range that load-client agent C can reach and there are three

load-server agents – S1, S2, and S3 – which satisfy the request from agent C. Since S1 is

the closest one to C, it is chosen which C will transfer its loads to.

Figure 6: An example for a load-client agent to choose a best-fit load-server agent

The following steps show the details of load transfer.

(1) When a host detects that it is heavily loaded, it broadcasts a request message to

hosts in its power range to ask for load transfer service. Instead of using fixed

threshold levels to check if it is lightly loaded or heavily loaded, fuzzy logic

control [5] is used to check its queue status to improve the performance. This

method is mentioned in [6, 7].

(2) Hosts, which receive the request, check their queue status using fuzzy logic

control method, and returns ACKs, if they are lightly loaded, to the load-client

agent that sent the request.

(3) When the load-client agent gets the ACKs from load-server agents, it chooses the

load-server agent, which is the first one to send its ACK, for load transfer. That

means that the load-client agent chooses the closest one in order to improve the

performance.

(4) If there are no available hosts in the load-client agent power range, the load-client

agent sends requests to its directory agents to look for the registered load-server

agents for load transfer. Then it waits for the responses from its directory agents.

(5) The directory agents find available (lightly loaded) load-server agents when they

receive requests from a load-client agent. Then, the directory agents send

addresses of these available load-server agents to that load-client agent for load

transfer. The load-client chooses the best host to transfer its loads to the selected

host.

4. Service type format and service price

In the future, it is possible that hosts have to pay if they ask for service from other hosts.

This section discusses this situation, and defines the service type format for load services

and the price for each service. This format is for a directory agent to store the information

in its database. Figure 7 shows the format that there are 4 fields in it – address, service-

type, number-of-tokens, and load.

The address field is the address of a load-server agent, so that a load-client can

directly connect to it. The service-type field indicates which kind of services that a load-

server agent provides. The number-of-tokens shows the price of a service for a load-client

to pay, and the load field shows the current load for a load-server agent. When a load-

server agent provides load services to directory agents, it provides directory agents the

information about the type(s) of services it can provides, the tokens (price) for a load-

client agent to take the service, and the current load status and address for the load-server

agent. A load-client agent can get the service only it matched the service type, and the

price that the load-server agents ask, or it can find an available load-server agent for load

transfer purpose if the load-server agent is lightly loaded and the load-client agent can

pay the price.

address service-type number-of-tokens load

Figure 7: Service Type Format Stored

There are some assumptions in the architecture for hosts.

1. A load-client agent has to pay a load-server agent when it needs load services

from that load-server agent.

2. When sending a request to a directory agent, a host loses tokens as the price for

asking load service.

3. In order to increase the number of tokens and therefore increase the ability to ask

for services, a host must try its best to gain tokens. There are two possible ways to

implement it. First of all, a host can provide the services to other hosts to gain

tokens. Secondly, a host should avoid sending useless requests to network to save

tokens. This can be implemented by increasing the waiting time for a load-client

agent to send requests. This also may avoid network congestion because the

number of messages is reduced.

4. A load-client agent may find several available load-server agents for a particular

request such that those load-server agents satisfy the requirements for the load-

client agent. Then the client host has to choose the best-fit one.

5. If a host does not have enough tokens to find a load-server agent for load services,

it should stop sending requests to its directory agents for asking load services until

it can provide enough tokens.

The request message, which a load-client agent sends out when it needs a service,

includes a price that the load-client agent can pay. The directory agent, which receives

the message, finds available load-server agents by comparing the key words and the

prices. For example, if a host needs a service with higher speed calculation, it sends

requests to its directory agents. In these requests, the speed of the load-server agent’s

processor and the price the load-client agent can provide are included. Directory agents

match these requirements to the information via the key words and the number of tokens

in their database and therefore find the available load-server agents. The addresses of

those load-server agents are sent to the requesting load-client agent. Upon receiving those

addresses, the load-client agent chooses one available and sends jobs directly to that load-

server agent. To choose an available load-server agent from those addresses by directory

agents, the load-client agent may choose the one, which asks the lowest number of tokens

for performing the requesting service.

5. Scalability

As the number of clients and servers in the network system increase, so does the burden

to the system because of the increases of messages for service discovery and request.

When a host joins or roams into a network, it sends out requests. If there are too many

hosts that move too frequently, they may send many requests, which may cause the

congestion of the network. Therefore, careful consideration of scalability issues is very

important to the design of the protocols. In this system, it uses the number of tokens (the

price to pay) to control the scalability of load-server agents registered with directory

agents and load-client agents sending load service requests. For example, a client host

cannot send requests to directory agents for services if it does not have enough tokens. It

should provide its services to other hosts to gain enough tokens before it sends requests.

6. Conclusion

This paper introduces a new load service method in wireless ad-hoc networks. Since the

hosts in a wireless ad-hoc network can move anywhere by anytime, it is difficult for a

host to find other host for load service or load transfer purposes. It discusses several

issues about, for example, how a directory agent asks for hosts to register as load-server

agents, how a load-server agent registers with directory agents’ databases, and how a

load-client agent finds available load-server agents when it needs load services. Directory

agents can find the available load-servers which provide services that clients need.

This paper also discusses a new concept that a host should pay the price when it

needs services from other hosts in networks and how it works by using token as the price

in the networks. It presents the token concept to control the scalability of networks and

congestion control of network flow. For the load transfer protocol, fuzzy logic control is

used to check load status of hosts.

References

[1] E. Guttman, C. Perkins, J. Veizades and M. Day, “Service Location Protocol,”

Version 2, IEFT, RFC 2165, November 1998.

[2] J. Waldo, “The Jini Architecture for network-centric computing,” Communication

of the ACM, pp 76-82, July 1999.

[3] H. Maab, “Location-Aware Mobile Application Based on Directory Services,”

MOBICOM 97, pp 23-33.

[4] W. Yeong, T. Howes, and S. Kille, “Lightweight Directory Access Protocol,” RFC

1777, March 1995.

[5] Ross, T. J., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995.

[6] Huang, M., S. H. Hosseini, and K. Vairavan, “Load Balancing in Computer

Networks,” Proceedings of ISCA 15th International Conference on Parallel and

Distributed Computing Systems (PDCS-2002), Special session in Network

Communication and Protocols. Held in the GALT HOUSE Hotel, Louisville,

Kentucky, Sep. 19 - 21.

[7] Ross, T. J., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995.

[8] Andy Oram et al., “Peer-to-Peer:Harnessing the Power of Disruptive Technologies,”

Oreilly 2001.

 [9] Stephanos Androutsellis-Theotokis and Diomidis Spinellis, “A survey of peer-to-

peer content distribution technologies,” ACM Computing Surveys, 36(4):335–371,

December 2004. doi:10.1145/1041680.1041681.

http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html
http://dx.doi.org/10.1145/1041680.1041681

