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INTRODUCTION 

DNA Sequencing 

 DNA sequencing can show the evolution of sequences that diverged from common 

ancestors over time.  Although the most important regions of DNA are usually conserved to 

ensure survival, slight changes or mutations do occur as sequences evolve [37].  These 

mutations are any combination of insertion, deletion and/or substitution events.  Methods such 

as sequence alignment are used to detect and quantify similarities between different DNA and 

protein sequences that may have evolved from a common ancestor.  Sequence alignment gives 

insight into the structure and functions of a sequence, shows a common ancestry or homology 

between sequences, detects mutations in DNA that lead to genetic disease and is the first step in 

constructing phylogenetic or evolutionary trees. 

 Sequence alignment (SA) is an optimal way of inserting dashes into sequences in order 

to minimize (or maximize) a specified scoring function [1, 37].  Generally, genetic sequencing 

can be classified as a pairwise sequence alignment or a multiple sequence alignment (MSA).  

MSA is simply an extension of pairwise alignments that align 3 or more sequences.   Both MSA 

and pairwise SA can further be categorized as global or local methods.  Whereas global methods 
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attempt to align entire sequences, local methods only align conserved regions of similarity. 

Multiple Sequence Alignment 

 Multiple sequence alignments are often classified as progressive or iterative.  Typically 

progressive alignments involve three steps.  In the first step, each pair of sequences is aligned 

using a Dynamic Programming approach.  Then, the scores from the pairwise alignments in step 

one are used to construct a tree.  Finally, the tree from step two is used to progressively align the 

sequences and calculate an alignment score.  In progressive algorithms, once a gap is introduced 

in the early stages of an MSA it is always present; thus one major drawback is that an error in an 

initial subalignment will be propagated throughout the entire MSA [26].  To avoid these 

problems, iterative techniques are used and initial alignments are constantly modified. 

 In many MSAs, a distance score is used to construct a tree.  A distance score represents 

the number of changes required to change one sequence into another.  In theory, the score 

reflects the amount of evolutionary time that has elapsed since the sequences diverged from a 

common ancestor; thus, a larger distance score, indicates greater evolutionary time and more 

sequence divergence [26].  The simplest way to calculate the distance score is to sum up the 

number of mismatches in an alignment and divide by the total number of matches and 

mismatches.  

LITERATURE REVIEW 

 ClustalW is a commonly used multiple sequence alignment program [19, 40, 20].  As 

with any other heuristic, ClustalW does not guarantee an optimal solution.  It progressively 

aligns sequences and exploits the fact that similar sequences are evolutionarily related.  First, 

ClustalW aligns and scores all possible pairs of sequences to determine their distance score. 

Then a guide tree is constructed using the edit distances and a neighbor joining algorithm.  
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Finally, the guide tree is used to progressively align the sequences.  Although an optimal 

solution is not guaranteed, ClustalW usually provides a good starting point for other refinement 

methods such as Hidden Markov Modeling.  Since ClustalW progressively aligns sequences, 

any regions that were misaligned early in the process cannot be corrected as the program 

progresses and more information is introduced.  Another problem with ClustalW is the choice of 

alignment parameters.  Sequences that are not highly conserved or not very similar are 

extremely sensitive to the adjustments of the parameters.  When aligning divergent sequences, 

slight parameter adjustments will drastically change the final multiple sequence alignment.  In 

general, it is difficult to justify why one scoring matrix or parameter selection is better than 

another [37].  As a direct result of the uncertainty involved in selecting the parameters, 

ClustalW is most useful when sequences are known to be evolutionarily related. 

 Notredame and Higgins [29] have the best known genetic algorithm, Sequence 

Alignment by Genetic Algorithm (SAGA), for multiple sequence alignment.  Similar to other 

genetic algorithms (GA), SAGA uses the principles of evolution to find the optimal alignment 

for multiple sequences.  This method generates many different alignments by rearrangements 

that simulate gap insertion and recombination events to generate higher and higher scores for 

the MSA [26]. In this GA, the population consists of alignments that were formed from a 

complex set of twenty two different crossover and mutation operations.  To determine the 

fitness of an alignment, SAGA uses a weighted sum of pairs approach in which each pair of 

sequences is aligned and scored; then the scores from all the pairwise alignments are summed to 

produce an alignment score.  As with any heuristic approach, SAGA may not generate an 

optimal MSA.  Although it has been shown that SAGA does produce quality alignments, the 

time complexity involved in the weighted sum of pairs fitness function is a major drawback to 
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this approach. 

 Brudno et al. [5] propose a glocal alignment approach that combines features of both 

local and global alignment methods.  This glocal aligner, Shuffle-LAGAN (SLAGAN), is a 

pairwise alignment algorithm that can be extended to multiple sequence alignment.  The distinct 

differences between global and local alignments are merged in the SLAGAN approach. Whereas 

global alignments transform one sequence into the other by using a combination of insertions, 

deletions and substitutions (simple edits), local alignment techniques tend to focus on 

similarities between conserved regions; this glocal alignment combines these features and 

creates a map that transforms one sequence into the other while allowing for rearrangement 

events.  SLAGAN includes rearrangement events because DNA is known to mutate by simple 

edits, rearrangements such as translocations (a subsegment is removed and inserted in a 

different location but with the same orientation), inversions (a subsegment is removed from the 

sequence and then reinserted in the same location but with the opposite orientation and 

duplications (a copy of a subsegment is inserted into the sequence and the original sub- 

sequence remains  unchanged) or any combination of these simple edits.  SLAGAN quickly 

aligns long sequences.  In this technique, a penalty is incurred for the set of operations that 

include insertions, deletions, point mutations, inversions, translocations and duplications.  This 

approach minimizes the sum of these penalties (edit distance). SLAGAN has three distinct 

stages.  The first stage consists of finding local alignments using the CHAOS tool.  The second 

stage picks the maximal scoring subset of the local alignments under certain gap penalties to 

form a 1-monotonic conservation map.  Whereas standard global alignments are non-decreasing 

in both sequences, the structure of the 1-monotonic conservation map is non-decreasing in one 

sequence and without restrictions in the second sequence.  Relaxing this assumption in the 
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second sequence, allows the algorithm to detect rearrangements.  The inclusion of 

rearrangement events is one of the features that make this algorithm different than typical global 

alignment approaches.  In the final stage of SLAGAN, the conservation map of local alignments 

is joined to form maximal consistent subsegments that are aligned using the LAGAN global 

aligner.  One drawback of the SLAGAN algorithm is that it is not symmetric in the sequence 

order, so it frequently misses duplications in the sequences. 

NEW APPROACH TO MULTIPLE SEQUENCE ALIGNMENT 

Basic Components of a Tabu Search 

 

 Tabu search is a heuristic approach that uses adaptive memory features to align multiple 

sequences.  The adaptive memory feature, a tabu list, helps the search process avoid local 

optimal solutions and explores the solution space in an effective manner [33].  While the tabu 

list restricts the search of some neighboring solutions, there are conditions which allow 

exceptions to the tabu list.  As displayed in Figure 1, a tabu procedure starts with an initial 

solution, generates neighbors and then moves to the best accessible neighboring solution.  

Accessible solutions are either not on the tabu list or are on the tabu list but satisfy a condition, 

an aspiration criterion, which allow exceptions to the tabu list [9].  In cases where the tabu 

search becomes stabilized and is no longer moving toward better solutions, a diversification and 

intensification procedure is implemented, so that more of the solution space can be explored.  

These steps are repeated, until some termination criterion is met. 

Specific Tabu Search Components 

 We develop and implement a tabu search based on the basic components outlined in the 

previous section and Glover’s tutorial [14].  A solution consists of arrays that contain the 

sequence order and the positions of the gaps in the corresponding MSA.  The actual MSA is not 
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stored in memory. The optimality criterion attempts to maximize the most important measure of 

an MSA -the alignment score.  Thus, the quality of an alignment is measured using the final 

alignment score.  Finally, the algorithm terminates after the current best solution has not 

improved for a specified number of iterations. 

 There are three types of move strategies that will generate a neighbor from a current 

solution.  The solution representation in Figure 2 displays the first two types of moves.   The 

first type of move is made by swapping pairs of sequences.   In Figure 2a) the current solution, 

is composed of two arrays, s and sg, that contain the sequence order of the MSA and the gap 

locations, respectively.  A possible  neighbor, displayed  in Figure 2b),  is generated  by 

swapping  the  sequences  in positions  3 and  5   as well as the sequences in positions 8 and 10.  

For this neighbor, the arrays containing the sequence order and gap location are different from  

Figure 1: The basic steps of a tabu search. 

 

 

the arrays in the current solution.  The second type of move is made by swapping blocks (two or 
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more consecutive sequences).  For example in Figure 2c, a possible neighbor of the current 

solution is generated  by swapping  sequences in positions  2, 3 and 4 with sequences in 

positions  7, 8 and 9.  The third type of move is made by changing the gap positions within a 

sequence. So, the array containing the sequence order would remain the same and only the array 

with the gap positions would change.  

This tabu search, simply progressively aligns all N sequences together in the order specified by 

a solution.   For the MSA in Figure 2a, s1 is aligned with s4 to compose the subalignment, a(s1, 

s4).  Next, s3 is aligned with the subalignment a(s1, s4) to compose the subalignment, a(s1, s4, 

s3).  This progressive alignment continues until the entire MSA, a(s1, s4, s3, s5, s7, s2, s10, s6, 

s8, s9), is composed.    

RESULTS 

 A multiple sequence generation procedure adapted from Shyu et al. [37] was used to 

simulate DNA sequences for 4 different groups.  This procedure attempts to simulate real 

biological sequences, with conserved regions that often correspond to important biological 

functions.   Twenty sequences were generated for each of the 4 groups that contained between 18-

201 base pairs. For each group of sequences, the tabu search algorithm was run 10 times 

each.   

 In Table 1, the highest alignment score in each group from the tabu search was 

compared with the scores from SAGA, ClustalW, and PRALINE.  Also in Table 1, the 

alignment scores are ranked according to the SP alignment score.  A 1 represents the best 

alignment and 4 represent the worst alignment. As a result of using the sum of pairs scoring 

function, generally, as the number of sequences or base pairs (BP) increases, the alignment  
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Figure 2:  Solutions representation and moves for the tabu search 
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score decreases.  This decrease in the SP alignment score is the direct result of more gaps 

with negative gap penalties being introduced into larger MSAs. 

 MSAs  from ClustalW, the  most  popular  commercial  alignment  program,  are  

used  to measure the quality  of the alignments  from other  programs.  Quality is measured 

in terms of the alignment score.   Thus, it is assumed that higher alignment scores will 

yield a higher quality MSA.  For all 4 groups, ClustalW yielded MSAs with the highest 

alignment score. Conversely, in most instances, PRALINE yielded the lowest alignment 

score.  The MSA scores for SAGA were higher than the tabu scores for each of the 4 

groups.  There was only 1 instance in which the tabu search produced the worst alignment of 

all the MSA programs.    

Table 1: SP alignment scores from ClustalW,  SAGA, PRALINE  and the tabu search 

 No. of  Seq,  
Length 

SP Score  No. of  Seq,  
Length 

SP Score  

Clus 20 ,18-21 -7.150E+03 1 50,18-21 -1.067E+04 1 

SAG 20 ,18-21 -7.150E+03 1 50,18-21 -1.069E+04 2 

PRA 20 ,18-21 -7.512E+03 3 50,18-21 -1.074E+04 3 

Tabu 20 ,18-21 -7.401E+03 2 50,18-21 -1.088E+04 4 

Clus 20, 39-51 -1.500E+04 1 50, 39-51 -3.193E+04 1 

SAG 20, 39-51 -1.500E+04 1 50, 39-51 -3.196E+04 2 

PRA 20, 39-51 -1.773E+04 3 50, 39-51 -3.298E+04 4 

Tabu 20, 39-51 -1.692E+04 2 50, 39-51 -3.215E+04 3 

Clus 20, 75-102 -3.776E+04 1 50, 75-102 -2.040E+04 1 

SAG 20, 75-102 -3.786E+04 2 50, 75-102 -2.128E+04 2 
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PRA 20, 75-102 -3.942E+04 3 50, 75-102 -2.279E+04 4 

Tabu 20, 75-102 -3.943E+04 4 50, 75-102 -2.278E+04 3 

Clus 20, 150-201 -5.901E+04 1 50, 150-201 -7.028E+04 1 

SAG 20, 150-201 -5.901E+04 1 50, 150-201 -7.167E+04 2 

PRA 20, 150-201 -5.991E+04 3 50, 150-201 -7.391E+04 4 

Tabu 20, 150-201 -5.947E+04 2 50, 150-201 -7.385E+04 3 

 
  
 The tabu search is run 10 times for each of the 8 groups of sequences.  Each run does not 

necessarily yield the best alignment score attained using the tabu.  The minimum, maximum, 

average, standard deviation  and the percentage of times the best score was reached (for 10 SP 

scores per  group)  are displayed  in Table 2.   The variability in the alignment scores increases 

as the number of sequences in the group increases.  The percentage of times that the best score 

is reached ranges between 10 and 50 percent.  The lack of a diversification procedure explains 

the widely varying MSA scores and the low percentage of times the best score is reached.   It is 

clear that adding a diverisification procedure would help prevent the tabu from cycling back into 

local optimal solutions. 

Table 2: Measures for the 10 tabu search runs per group using the tabu search 

  Tabu Search  

No. of   seq,  

Length 

Min SP Max SP Avg  SP St Dev %Max 

20, 18-21 -7.52E+03 -7.40E+03 -7.46E+03 8.70E+01 50 

20, 39-51 -1.80E+04 -1.69E+04 -1.75E+04 7.79E+02 40 

20, 75-102 -4.14E+04 -3.94E+04 -4.04E+04 1.40E+03 40 

20, 150-201 -6.14E+04 -5.95E+04 -6.05E+04 1.39E+03 30 
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CONCLUSION 

 Tabu search is an effective way to align multiple sequences.   This Tabu search does 

not use a tree to guide the alignment process. One advantage of not using a guide tree is that  

the tabu search avoids performing  pairwise alignments for each pair of sequences in an 

MSA.  When aligning large groups of sequences, making all of the pairwise alignments 

could become computationally expensive.  Another advantage of not using a guide tree 

(typically produced from a neighbor joining algorithm) is that we can avoid predicting 

incorrect evolutionary trees.  With the addition of a diversification procedure, the tabu search 

has the potential of producing better alignments that are comparable with ClustalW.  
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